文章编号:0494-0911(2012)07-0014-03

中图分类号: P208

文献标识码: B

地理参考下未标定图像序列的三维点云精度分析

宋宏权 刘学军 闾国年 甄 艳

(南京师范大学 虚拟地理环境教育部重点实验室 江苏 南京 210046)

3D Point Clouds Accuracy Analysis Based on Uncalibrated

Image Sequences in Georeference Framework

SONG Hongquan , LIU Xuejun , LÜ Guonian , ZHEN Yan

摘要:利用计算机视觉理论与方法恢复未标定图像序列的稠密三维点云 将其统一至地理参考下,并分析转换结果的精度。结果 表明,此方法成本低,精度可达厘米甚至毫米级,可满足三维GIS中测量、建模与分析的需求。 关键词:三维点云;未标定图像序列;运动恢复结构;精度分析

一、引言

随着 GIS 应用的深入,人们对地理信息的关注 程度越来越高,越来越多地要求从真三维空间来处 理问题。三维 GIS 不仅突破了地理信息二维表达的 束缚,同时为空间分析与空间认知提供了新途径, 可更直观地辅助行业决策。随着雷达、激光扫描等 三维遥测技术日益成熟,三维点云已成为三维 GIS 重要的数据源^[14],已应用于古建筑重建、虚拟现 实、地形勘测、数字城市、城市规划等诸多领域^[5]。 目前,三维点云的获取主要采用雷达、激光扫描等 方式,其成本高,难以满足社会化需求。如何低成 本、快速、准确、有效地获取空间三维信息,是许多 学者深入研究的课题。

针对上述问题,本文尝试利用计算机视觉理论 与方法恢复未标定图像序列的稠密点云,并将其统 一至地理参考下分析其三维纠正结果的精度。

二、点云数据的三维纠正

1. 点云数据的获取

本文利用计算机视觉中的运动恢复结构(structure from motion,SFM) 与多视图立体(multi-view stereo,MVS) 三维重建技术,对未标定图像序列进行 三维重构,得到稠密匹配点云。首先采用 SFM 开源 软件 Bundler 获得各幅图像的摄像机内外参数,再 利用多视立体开源软件 PMVS 获得图像序列的稠密 三维点云,具体流程如图1所示。

图1 点云获取流程

2. 转换模型

初始获取的稠密点云采用的是任意摄像机坐标系,而非 GIS 系统中的独立地方坐标系或局部工程坐标系,为实现点云数据在 GIS 环境下的可量测,

收稿日期: 2011-08-16 基金项目:国家科技支撑项目(2012BAH35B02);江苏省高校自然科学重大基础研究资助项目(10KJA420025) 作者简介:宋宏权(1986—) 男 河南民权人 博士生,主要研究方向为视频 GIS、地理信息系统开发与应用。 需将其统一至 GIS 系统坐标系。由于摄像机坐标系 与 GIS 系统坐标系之间的欧拉角较大,因此在三维 纠正中不能采用小角度空间直角坐标转换模型。 本文采用陈义等^[6]提出的适用于大旋转角的三维 基准转换模型。该模型不仅可实现大角度的转换, 且计算过程简单,便于程序实现。

3. 特征点精度评定

选取特征点是坐标转换中的一个重要步骤,其 精度对转换模型精度有较大影响。本文采用手工 点取方式选择与控制点对应的特征点。为分析特 征点选取精度,对每个特征点选取 n 次,由式(1)求 算特征点的选取误差

$$\sigma_{p} = \pm \sqrt{\frac{\sum_{i=1}^{n} (\sigma_{x_{i}}^{2} + \sigma_{y_{i}}^{2} + \sigma_{z_{i}}^{2})}{3n}}$$
(1)

式中 $\sigma_{x_i} \circ \sigma_{y_i} \circ \sigma_{z_i}$ 分别表示第 *i* 次选取的某特征点在 $x \circ y \circ z$ 轴上分量与 *n* 次选取结果分量均值的差值; σ_p 表示所选特征点的离散程度 ,即中误差。其值越 大 表明分布越离散 ,即选取的特征点精度越差;反 之 则说明点的分布越集中 ,即所选取的特征点精 度越高。

4. 转换模型精度评定

坐标转换模型对点云转换结果的质量起决定 性影响,本文采用式(2)分析转换模型的精度

$$\mu_{m} = \pm \sqrt{\frac{\sum_{i=1}^{n} \left(\Delta_{x_{i}}^{2} + \Delta_{y_{i}}^{2} + \Delta_{z_{i}}^{2} \right)}{3n}}$$
(2)

式中 $\Delta_{x_i} \Delta_{y_i} \Delta_{z_i}$ 分别为第 i 个特征点转换前后在 $X \nabla_{\Sigma} Z$ 3 个方向的差值; n 为选取的特征点个数。 σ_m 值越大,则转换精度越低;反之,则转换精度 越高。

三、试验结果与精度分析

1. 试验数据

 σ

本试验数据为普通数码相机从不同角度拍摄 的15幅南京师范大学仙林校区百年校庆纪念鼎图 像图2为示例图像。利用上述技术流程获取的图 像序列稠密点云如图3所示。

图 2 试验数据示例

图 3 未纠正稠密点云三维显示

为实现点云在 GIS 系统中的准确定位,需首先 选取控制点。本试验采用高斯-克吕格投影将鼎底 中心点经纬度坐标投影在 GIS 环境下,以该点为中 心 根据实测的不同层次鼎体已知长、宽、高,分别 计算用于求取转换模型的控制点坐标,最终得到 表1 所示的12 个控制点。

表1 控制点三维坐标表 m

点号	X	Y	Ζ
1	680 400. 549	3 554 692. 572	26
2	680 402.448	3 554 692.57	26
3	680 402.444	3 554 693.885	26
4	680 400. 544	3 554 693.885	26
5	680 400. 496	3 554 692. 515	27.22947
6	680 402.503	3 554 692. 515	27.22947
7	680 402.501	3 554 693.944	27.22947
8	680 400. 494	3 554 693.942	27.22947
9	680 400. 457	3 554 692.482	27.2955
10	680 402.538	3 554 692.482	27.2955
11	680 402.535	3 554 693.965	27.2955
12	680 400. 466	3 554 693.972	27.2955

2. 特征点精度分析

由于点云的离散性,只选取一次作为特征点具有 很大随机性。因此,多次选取并采用均值作为特征点 将会提高特征点选取精度。本文对每个特征点选取 10次,以均值作为相应特征点坐标。各特征点的均值 坐标、选取中误差及特征点总体中误差如表2所示。

表 2 特征点坐标及选取中误差

点号	X/m	Y/m	$Z/{ m m}$	中误差/mm		
1	-0.551698	- 30. 331 05	-4.856616	±6.9051		
2	-1.313 487	- 30. 874 47	-4.931 589	±5.7594		
3	-0.954 012	-31.375 57	- 4. 999 495	±11.8871		
4	-0.200 883	- 30. 822 26	- 4. 924 99	± 10.4107		
5	-0.572 261	- 30. 358 89	-4.220406	± 4.7055		
6	-1.366 128	- 30. 956 98	-4.323 071	±3.2112		
7	-0.958 697	- 31. 535 95	-4.407 087	± 8.0791		
8	-0.146 353	- 30. 929 99	-4.328 024	±6.7974		
9	-0.55759	- 30. 319 46	-4.184388	±9.4214		
10	-1.413 579	- 30. 955 22	-4.288124	±9.2383		
11	-0.091656	- 30. 903 07	-4.300 645	±5.4531		
12	-0.967 935	- 31. 581 81	-4.388396	±9.0481		
$\sigma = \pm 7.959.2 \text{ mm}$						

m

3. 坐标转换与转换模型精度

根据特征点与控制点对应关系 利用转换模型

	0. 810 506 748 043 499	0. 578 537 381 928 062	0. 091 505 786 863 441 1]
M =	-0. 605 459 230 250 409	0. 784 949 511 101 058	0. 124 596 160 864 094
	- 0. 001 286 751 031 272 04	0. 152 508 744 235 809	-0. 988 410 253 360 297

式中 μ 为尺度因子; (X_0, Y_0, Z_0) 为平移向量; M为旋转矩阵。利用转换模型对原始稠密点云进行坐

标转换 特征点转换后坐标与相应实测控制点坐标 如表 3 所示。

 $\mu = -1.99863387405445$

= 680 363. 698 427 872 3 554 644. 529 604 21

26. 334 768 627 334 5

和约束条件求得转换系数分别为

表3 特征点转换后与控制点坐标表

点	转换后坐标			实测控制点坐标		
号	X	Y	Ζ	X	Y	Ζ
1	680 400. 551 7	3 554 692.656	25.98443089	680 400. 549	3 554 692. 572	26
2	680 402. 427 7	3 554 692.605	26.000 004 22	680 402.448	3 554 692.57	26
3	680 402. 437 3	3 554 693.843	26.019 522 28	680 402.444	3 554 693.885	26
4	680 400. 563 9	3 554 693.868	25.99998759	680 400. 544	3 554 693.885	26
5	680 400. 500 8	3 554 692. 516	27.2496778	680 400. 496	3 554 692. 515	27.22947
6	680 402.497 1	3 554 692. 519	27.227 127 83	680 402.503	3 554 692. 515	27.22947
7	680 402. 522	3 554 693.941	27.238 679 88	680 402.501	3 554 693.944	27.22947
8	680 400. 490 9	3 554 693.954	27.21225347	680 400. 494	3 554 693.942	27.22947
9	680 400. 424 9	3 554 692.463	27.308 849 39	680 400.457	3 554 692.482	27.295 5
10	680 402. 565 6	3 554 692.45	27.295 506 09	680 402.538	3 554 692.482	27.295 5
11	680 402. 586 5	3 554 693.998	27.289 558 18	680 402.535	3 554 693.965	27.2955
12	680 400. 366 2	3 554 693.971	27.25827508	680 400. 466	3 554 693.972	27.2955

利用上述精度评价模型,实测控制点坐标与转换后坐标在X、Y、Z轴的差值及转换模型中误差如表4所示,转换模型中误差为±2.9657 cm,可以满足测量工作的需求。

表4	特征点转换前后差值与转换模型中误差	m

点号	ΔX	ΔY	ΔZ		
1	0.002 657 27	0.083 564 298	-0.015 569 11		
2	-0.020 256 669	0.034 932 01	0.000 004 22		
3	-0.006 738 93	-0.042 021 506	0.019 522 28		
4	0.019 853 337	-0.017 267 764	-0.000 012 41		
5	0.004 804 423	0.000926727	0.020 207 80		
6	-0.005 867 926	0.004 141 047	-0.002 342 17		
7	0.020950951	-0.002 604 447	0.009 209 88		
8	-0.003 091 016	0.012070729	-0.017 216 53		
9	-0.032 140 886	-0.019 148 015	0.013 349 39		
10	0.027 571 848	-0.031 742 708	0.000 006 09		
11	0.051 524 19	0.032 508 892	-0.005 941 82		
12	-0.099 830 266	-0.000791092	-0.037 224 924		
$\sigma_m = \pm 2.9657 \text{ cm}$					

为评估转换后点云数据的精度,利用已知数

据 在 GIS 系统中通过多次量测来评价转换后点云 数据的质量。对鼎体各层次的长、宽、高分别进行 5 次量测,并根据已知真实值求算中误差,结果如表 5 所示。由表 5 可知,转换后的点云数据在 GIS 环境 下长度量测中误差为毫米至厘米级,总体中误差为 毫米级,能够满足测量工作的需求。

四、结论与讨论

通过试验及结果分析可知:① 利用未标定图像 序列获取地物目标的三维点云数据是可行的,且工 作流程简单、成本低;② 通过三维纠正,其精度可达 厘米甚至毫米级,能够满足测量工作的需求;③ 丰 富了三维空间数据采集的方法。

本文只是从三维纠正的角度分析了点云精度, 如何从测绘的角度以误差传播理论来分析未标定 图像序列点云的获取精度,有待于进一步研究。计 算机视觉的研究目标是使计算机具有通过二维图 像认知三维环境信息的能力,不仅能够感知三维环 (下转第20页) 云提取率可达到 96.5% 拟合的电力线能很好地与电 力线点云吻合 达到了良好的效果 具有一定的工程 应用价值。但是该算法也有一定缺陷 对原始数据有 严格要求 对点云密度大的数据提取效果比较好 ,中 间有缺失的点云数据则提取效果相对较差。考虑到 电力线提取能够在将来电力巡线中有较大的普遍适 用性 还须对该方法作进一步改进。

参考文献:

- [1] 孙晓云,王晓冬.应用 LIDAR 数据中提取电网信息方 法初探[J].测绘技术装备 2010,12(1):27-29.
- [2] MCLAUHLIN R A. Extracting Transmission Lines from Airborne LiDAR Data[J]. IEEE Geoscience and Remote Sensing Letters, 2006 3(2):222-226.
- [3] JWA Y ,SOHN G ,KIM H. Automatic 3D Powerline Reconstruction Using Airborne LiDAR Data [J]. IAPRS , 2009 ,XXXVIII: 105-110.
- [4] MELIER T , BRIESE C. Extraction and Modeling of Power

(上接第16页) 境中目标对象的几何信息,如形状、位置、姿态、运动等,且能够对它们进行识别与理解。因此,将GIS Lines from ALS Point Clouds [C] // Proceedings of 28th Workshop of the Austrian Association for Pattern Recognition. Hagenberg [s. n.] 2004.

- [5] PETZOLD B ,AXELSSON P. Result of the OEEPE WG on Laser Data Acquisition [J]. IAPRS , 2000 ,33 (B3) : 718-723.
- [6] ELBERINK S MASS H G. The Use of Anisotropic Height Texture Measures for the Segmentation of Ariborne Laser Scanner Data [J]. IAPRS, 2000 33(B3):678-684.
- [7] 叶岚,刘倩,胡敬武.基于 LIDAR 点云数据的电力线提 取和拟合方法研究 [J]. 测绘与地理空间信息,2010, 33(5):30-34.
- [8] 蓝曾荣 胡庆武. 基于机载 LiDAR 的数字电网巡线应 用研究[C]//第一届全国激光雷达对地观测高级学术 研讨会论文集. 北京: [s. n.] 2010: 382-387.
- [9] 欧同庚 耿学贤 杨博雄. 车载数据采集系统在电力线 检测中的应用 [J]. 大地测量与地球动力学,2009, 29(2):149-151.

与计算机视觉、模式识别等结合发展视频 GIS 将成为 GIS 领域新的研究方向。

编号 —		测量次数				吉守侍/	中归关 /
	1/cm	2/cm	3/cm	4/cm	5/cm	具头11/cm	甲呋左/㎜
А	189.766	188.862	189.367	190.942	188.851	189.25	±8.3097
В	129.319	131.298	129.974	128.511	130.966	130.85	±13.2638
С	200.308	200.068	199.655	199.974	201.000	200.71	±6.8009
D	141.361	141.826	143.201	141.216	142.288	142.23	± 7.6063
Е	208.324	206.064	207.761	206.853	206.668	206.80	± 8.7270
F	147.854	149.126	148.223	147.900	150.113	148.19	±9.7695
G	123.326	123.465	122.954	122.961	123.202	123.27	±2.1960
Н	129.172	129.362	129.504	129.696	129.719	129.55	±2.1458
$\sigma_m = \pm 8.1403 \text{ mm}$							

表5 GIS 环境下点云精度评价

参考文献:

- [1] 李必军,方志祥,任娟.从激光扫描数据中进行建筑物 特征提取研究[J].武汉大学学报:信息科学版 2003, 28(1):65-70.
- [2] 古林玉,卢小平,李英成,等.基于LiDAR点云与特征 线的DEM更新方法[J].测绘通报2011(2):17-20.
- [3] 杨必胜,魏征,李清泉,等.面向车载激光扫描点云快 速分类的点云特征图像生成方法[J].测绘学报, 2010,39(5):540-545.
- [4] 隋立春,张熠斌,柳艳,等.基于改进的数学形态学算

法的 LiDAR 点云数据滤波 [J]. 测绘学报,2010, 39(4):390-396.

- [5] GAULTON R, TIM J M. LiDAR Mapping of Canopy Gaps in Continuous Cover Forests: A Comparison of Canopy Height Model and Point Cloud Based Techniques [J]. International Journal of Remote Sensing, 2010, 31(5): 1193–1211.
- [6] 陈义 沈云中 刘大杰.适用于大旋转角的基准转换的 一种简便模型[J].武汉大学学报:信息科学版 2004, 29(12):1101-1105.